Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 812
Filtrar
1.
Adv Appl Microbiol ; 126: 27-62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38637106

RESUMO

Kluyveromyces marxianus is a non-Saccharomyces yeast that has gained importance due to its great potential to be used in the food and biotechnology industries. In general, K. marxianus is a known yeast for its ability to assimilate hexoses and pentoses; even this yeast can grow in disaccharides such as sucrose and lactose and polysaccharides such as agave fructans. Otherwise, K. marxianus is an excellent microorganism to produce metabolites of biotechnological interest, such as enzymes, ethanol, aroma compounds, organic acids, and single-cell proteins. However, several studies highlighted the metabolic trait variations among the K. marxianus strains, suggesting genetic diversity within the species that determines its metabolic functions; this diversity can be attributed to its high adaptation capacity against stressful environments. The outstanding metabolic characteristics of K. marxianus have motivated this yeast to be a study model to evaluate its easy adaptability to several environments. This chapter will discuss overview characteristics and applications of K. marxianus and recent insights into the stress response and adaptation mechanisms used by this non-Saccharomyces yeast.


Assuntos
Etanol , Kluyveromyces , Fermentação , Etanol/metabolismo , Biotecnologia , Kluyveromyces/genética , Kluyveromyces/metabolismo
2.
Bioresour Technol ; 399: 130627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522677

RESUMO

Overexpression of a gene with unknown function in Kluyveromyces marxianus markedly improved tolerance to lignocellulosic biomass-derived inhibitors. This overexpression also enhanced tolerance to elevated temperatures, ethanol, and high concentrations of NaCl and glucose. Inhibitor degradation and transcriptome analyses related this K. marxianusMultiple Stress Resistance (KmMSR) gene to the robustness of yeast cells. Nuclear localization and DNA-binding domain analyses indicate that KmMsr is a putative transcriptional regulator. Overexpression of a mutant protein with deletion in the flexible region between amino acids 100 and 150 further enhanced tolerance to multiple inhibitors during fermentation, with ethanol production and productivity increasing by 36.31 % and 80.22 %, respectively. In simultaneous saccharification co-fermentation of corncob without detoxification, expression of KmMSR with the deleted flexible region improved ethanol production by 5-fold at 42 °C and 2-fold at 37 °C. Overexpression of the KmMSR mutant provides a strategy for constructing robust lignocellulosic biomass using strains.


Assuntos
Kluyveromyces , Zea mays , Zea mays/metabolismo , Fermentação , Kluyveromyces/genética , Kluyveromyces/metabolismo , Etanol/metabolismo
3.
Microb Cell Fact ; 23(1): 7, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172836

RESUMO

BACKGROUND: The 5´ untranslated region (5´ UTR) plays a key role in regulating translation efficiency and mRNA stability, making it a favored target in genetic engineering and synthetic biology. A common feature found in the 5´ UTR is the poly-adenine (poly(A)) tract. However, the effect of 5´ UTR poly(A) on protein production remains controversial. Machine-learning models are powerful tools for explaining the complex contributions of features, but models incorporating features of 5´ UTR poly(A) are currently lacking. Thus, our goal is to construct such a model, using natural 5´ UTRs from Kluyveromyces marxianus, a promising cell factory for producing heterologous proteins. RESULTS: We constructed a mini-library consisting of 207 5´ UTRs harboring poly(A) and 34 5´ UTRs without poly(A) from K. marxianus. The effects of each 5´ UTR on the production of a GFP reporter were evaluated individually in vivo, and the resulting protein abundance spanned an approximately 450-fold range throughout. The data were used to train a multi-layer perceptron neural network (MLP-NN) model that incorporated the length and position of poly(A) as features. The model exhibited good performance in predicting protein abundance (average R2 = 0.7290). The model suggests that the length of poly(A) is negatively correlated with protein production, whereas poly(A) located between 10 and 30 nt upstream of the start codon (AUG) exhibits a weak positive effect on protein abundance. Using the model as guidance, the deletion or reduction of poly(A) upstream of 30 nt preceding AUG tended to improve the production of GFP and a feruloyl esterase. Deletions of poly(A) showed inconsistent effects on mRNA levels, suggesting that poly(A) represses protein production either with or without reducing mRNA levels. CONCLUSION: The effects of poly(A) on protein production depend on its length and position. Integrating poly(A) features into machine-learning models improves simulation accuracy. Deleting or reducing poly(A) upstream of 30 nt preceding AUG tends to enhance protein production. This optimization strategy can be applied to enhance the yield of K. marxianus and other microbial cell factories.


Assuntos
Kluyveromyces , Regiões 5' não Traduzidas , Sequência de Bases , Kluyveromyces/genética , Kluyveromyces/metabolismo , RNA Mensageiro/genética
4.
Iran Biomed J ; 27(5): 320-25, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37525429

RESUMO

Background: Mannoproteins, mannose-glycosylated proteins, play an important role in biological processes and have various applications in industries. Several methods have been already used for the extraction of mannoproteins from yeast cell-wall. The aim of this study was to evaluate the extraction and deproteinization of mannan oligosaccharide from the Kluyveromyces (K.) marxianus mannoprotein. Methods: To acquire crude mannan oligosaccharides, K. marxianus mannoproteins were deproteinized by the Sevage, trichloroacetic acid, and hydrochloric acid (HCL) methods. Total nitrogen, crude protein content, fat, carbohydrate and ash content were measured according to the monograph prepared by the meeting of the Joint FAO/WHO Expert Committee and standard. Mannan oligosaccharide loss, percentage of deproteinization, and chemical composition of the product were assessed to check the proficiency of different methods. Results: Highly purified (95.4%) mannan oligosaccharide with the highest deproteinization (97.33 ± 0.4%) and mannan oligosaccharide loss (25.1 ± 0.6%) were obtained following HCl method. Conclusion: HCl, was the most appropriate deproteinization method for the removal of impurities. This preliminary data will support future studies to design scale-up procedures.


Assuntos
Kluyveromyces , Mananas , Mananas/química , Mananas/metabolismo , Kluyveromyces/química , Kluyveromyces/metabolismo , Glicoproteínas de Membrana/metabolismo , Oligossacarídeos/metabolismo
5.
Appl Microbiol Biotechnol ; 107(16): 5095-5105, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37405435

RESUMO

Saccharomyces cerevisiae is the workhorse of fermentation industry. Upon engineering for D-lactate production by a series of gene deletions, this yeast had deficiencies in cell growth and D-lactate production at high substrate concentrations. Complex nutrients or high cell density were thus required to support growth and D-lactate production with a potential to increase medium and process cost of industrial-scale D-lactate production. As an alternative microbial biocatalyst, a Crabtree-negative and thermotolerant yeast Kluyveromyces marxianus was engineered in this study to produce high titer and yield of D-lactate at a lower pH without growth defects. Only pyruvate decarboxylase 1 (PDC1) gene was replaced by a codon-optimized bacterial D-lactate dehydrogenase (ldhA). Ethanol, glycerol, or acetic acid was not produced by the resulting strain, KMΔpdc1::ldhA. Aeration rate at 1.5 vvm and culture pH 5.0 at 30 °C provided the highest D-lactate titer of 42.97 ± 0.48 g/L from glucose. Yield and productivity of D-lactate, and glucose-consumption rate were 0.85 ± 0.01 g/g, 0.90 ± 0.01 g/(L·h), and 1.06 ± 0.00 g/(L·h), respectively. Surprisingly, D-lactate titer, productivity, and glucose-consumption rate of 52.29 ± 0.68 g/L, 1.38 ± 0.05 g/(L·h), and 1.22 ± 0.00 g/(L·h), respectively, were higher at 42 °C compared to 30 °C. Sugarcane molasses, a low-value carbon, led to the highest D-lactate titer and yield of 66.26 ± 0.81 g/L and 0.91 ± 0.01 g/g, respectively, in a medium without additional nutrients. This study is a pioneer work of engineering K. marxianus to produce D-lactate at the yield approaching theoretical maximum using simple batch process. Our results support the potential of an engineered K. marxianus for D-lactate production on an industrial scale. KEY POINTS: • K. marxianus was engineered by deleting PDC1 and expressing codon-optimized D-ldhA. • The strain allowed high D-lactate titer and yield under pH ranging from 3.5 to 5.0. • The strain produced 66 g/L D-lactate at 30 °C from molasses without any additional nutrients.


Assuntos
Kluyveromyces , Ácido Láctico , Saccharomyces cerevisiae/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , L-Lactato Desidrogenase/metabolismo , Glucose , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Concentração de Íons de Hidrogênio , Fermentação
6.
Molecules ; 28(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513409

RESUMO

Whey is a dairy residue generated during the production of cheese and yogurt. Whey contains mainly lactose and proteins, contributing to its high chemical oxygen demand (COD). Current environmental regulations request proper whey disposal to avoid environmental pollution. Whey components can be transformed by yeast into ethanol and biomolecules with aroma and flavor properties, for example, 2-phenyethanol (2PE), highly appreciated in the industry due to its organoleptic and biocidal properties. The present study aimed to valorize agri-food residues in 2PE by developing suitable bioprocess. Cheese whey was used as substrate source, whereas crab headshells, residual soy cake, and brewer's spent yeast (BSY) were used as renewable nitrogen sources for the yeasts Kluyveromyces marxianus and Debaryomyces hansenii. The BSYs promoted the growth of both yeasts and the production of 2PE in flask fermentation. The bioprocess scale-up to 2 L bioreactor allowed for obtaining a 2PE productivity of 0.04 g2PE/L·h, twofold better productivity results compared to the literature. The bioprocess can save a treatment unit because the whey COD decreased under the detection limit of the analytical method, which is lower than environmental requirements. In this way, the bioprocess prevents environmental contamination and contributes to the circular economy of the dairy industry.


Assuntos
Queijo , Kluyveromyces , Álcool Feniletílico , Fermentação , Álcool Feniletílico/metabolismo , Técnicas de Cocultura , Leveduras/metabolismo , Kluyveromyces/metabolismo , Proteínas do Soro do Leite/metabolismo , Soro do Leite/metabolismo , Lactose/metabolismo
7.
J Agric Food Chem ; 71(23): 9031-9039, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37261812

RESUMO

Lacto-N-biose (LNB) is a member of the human milk oligosaccharide (HMO) family and is synthesized via an enzymatic reaction in vitro with N-acetylglucosamine (GlcNAc) and cofactors. In this study, LNB was synthesized using a cell factory for the first time. First, three modules were constructed in Kluyveromyces lactis for producing LNB from lactose and GlcNAc without the addition of cofactors. Second, a de novo pathway was constructed in K. lactis for producing LNB from lactose without adding GlcNAc. Finally, a transcriptional switch was introduced into K. lactis to reprogram its metabolic network for improving the flux from GlcNAc-6-P to GlcNAc in the de novo pathway. Subsequently, a final LNB yield of 10.41 g/L, similar to the salvage pathway yield, was achieved through the de novo pathway. The engineered K. lactis provides a promising technology platform for the industrial scale production of LNB.


Assuntos
Kluyveromyces , Lactose , Humanos , Oligossacarídeos/metabolismo , Redes e Vias Metabólicas , Kluyveromyces/genética , Kluyveromyces/metabolismo
8.
Enzyme Microb Technol ; 169: 110263, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37311284

RESUMO

Galacto-oligosaccharides (GOS) are used as prebiotic ingredients in various food and pharmaceutical industry. At present, production of GOS involves the enzymatic transformation of lactose by transgalactosylation using ß-galactosidase. The yeast Kluyveromyces lactis can utilize lactose as its carbon and energy source. In this species lactose is hydrolyzed by an intracellular ß-galactosidase (EC 3.2.1.23) which is induced by its substrate and related compounds like galactose. The molecular details of gene regulation in kluyveromyces lactis, we have used multiple knockout approaches to study the constitutive expression by which galactose induces ß-galactosidase. The present study involved carrying out to a method of enhancing the constitutive expression of ß-galactosidase through galactose induction and its trans-galactosylation reaction for the production of galacto-oligosaccharides (GOS) in Kluyveromyces lactis (K. Lactis) by applying a knockout based approach on Leloir pathway genes based on fusion-overlap extension polymerase chain reaction and transformation into its genome. The k.lactis strain subjected to Leloir pathway genes knockout, resulted in the accumulation of galactose intracellularly and this internal galactose acts as an inducer of galactose regulon for constitutive expression of ß-galactosidase at early stationary phase was due to the positive regulatory function of mutant gal1p, gal7p and both. These resulted strains used for trans-galactosylation of lactose by ß - galactosidase is characterized for the production of galacto-oligosaccharides. Galactose-induced constitutive expression of ß-galactosidase during the early stationary phase of knockout strains was analysed qualitatively & quantitatively. The activity of ß-galactosidase of wild type, gal1z, gal7k and gal1z & gal7k strains were 7, 8, 9 and 11 U/ml respectively using high cell density cultivation medium. Based on these expression differences in ß-galactosidase, the trans-galactosylation reaction for GOS production and percentage yield of GOS were compared at 25% w/v of lactose. The percentage yield of GOS production of wild type, Δgal1z Lac4+, Δgal7k Lac4++ and Δgal1z Δgal7k Lac4+++mutants strains were 6.3, 13, 17 and 22 U/ml, respectively. Therefore, we propose that the availability of galactose can be used for constitutive over expression of ß - galactosidase in Leloir pathway engineering applications and also for GOS production. Further, increased expression of ß - galactosidases can be used in dairy industry by-products like whey to produce added value products such as galacto-oligosaccharides.


Assuntos
Kluyveromyces , Lactose , Lactose/metabolismo , Galactose/metabolismo , Oligossacarídeos/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , beta-Galactosidase/metabolismo
9.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108722

RESUMO

Whey permeate is categorised as hazardous wastewater for aquatic environments, mainly due to its high lactose content. Therefore, it must be valorised before being released into the environment. One pathway for whey permeate management is its use in biotechnological processes. Herein, we present roads for whey permeate valorisation with the K. marxianus WUT240 strain. The established technology is based on two bioprocesses. During first, 2.5 g/L 2-phenylethanol and fermented plant oils enriched with different flavourings are obtained after 48 h biphasic cultures at 30 °C. The second process leads to a maximum of 75 g ethanol/L (YP/S = 0.53 g/g) after 96 h at 30 °C. Moreover, established whey permeate valorisation pathways reduced its biochemical oxygen demand and chemical oxygen demand values by 12- to 3-fold, respectively. Together, the present study reports a complete, effective, and environmentally friendly whey permeate management strategy while simultaneously enabling the acquisition of valuable compounds with substantial application potential.


Assuntos
Queijo , Kluyveromyces , Soro do Leite/química , Técnicas de Cultura Celular por Lotes , Proteínas do Soro do Leite/metabolismo , Kluyveromyces/metabolismo , Lactose/metabolismo , Fermentação
10.
Biotechnol Adv ; 64: 108125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36870581

RESUMO

As the two most widely used Kluyveromyces yeast, Kluyveromyces marxianus and K. lactis have gained increasing attention as microbial chassis in biocatalysts, biomanufacturing and the utilization of low-cost raw materials owing to their high suitability to these applications. However, due to slow progress in the development of molecular genetic manipulation tools and synthetic biology strategies, Kluyveromyces yeast cell factories as biological manufacturing platforms have not been fully developed. In this review, we provide a comprehensive overview of the attractive characteristics and applications of Kluyveromyces cell factories, with special emphasis on the development of molecular genetic manipulation tools and systems engineering strategies for synthetic biology. In addition, future avenues in the development of Kluyveromyces cell factories for the utilization of simple carbon compounds as substrates, the dynamic regulation of metabolic pathways, and for rapid directed evolution of robust strains are proposed. We expect that more synthetic systems, synthetic biology tools and metabolic engineering strategies will adapt to and optimize for Kluyveromyces cell factories to achieve green biofabrication of multiple products with higher efficiency.


Assuntos
Kluyveromyces , Kluyveromyces/genética , Kluyveromyces/metabolismo , Engenharia Metabólica , Biologia Sintética
11.
Appl Microbiol Biotechnol ; 107(5-6): 1635-1648, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36786916

RESUMO

Ethyl acetate is an important organic solvent and currently produced from fossil carbon resources. Microbial synthesis of this ester from sugar-rich waste could be an interesting alternative. Therefore, synthesis of ethyl acetate by Kluyveromyces marxinanus DSM 5422 from delactosed whey permeate (DWP) was studied in an aerated stirred bioreactor at 40 °C. DWP is mainly composed of residual lactose and minerals. The minerals inhibited yeast growth, as witnessed by an increased lag period, a reduced growth rate, and an extended process duration. All experiments were therefore carried out with diluted DWP. In a series of batch experiments, the pH of iron-deficient DWP medium varied between 4.8 and 5.9. The pH of the cultivation medium significantly influenced cell growth and product syntheses, with the highest ethyl acetate yield of 0.347 g g-1 and lowest by-product formation achieved at pH 5.1. It is likely that this effect is due to pH-dependent iron chelation, which affects the iron bioavailability and the intracellular iron content, thus affecting growth and metabolite synthesis. The viability of yeast cells was always high despite the harsh conditions in DWP medium, which enabled extended usage of the biomass in repeated-batch and fed-batch cultivations. These two culture techniques increased the volume of DWP processed per time by 32 and 84% for the repeated-batch and the fed-batch cultivation, respectively, without a drop of the ester yield. KEY POINTS: • Delactosed whey permeate was converted to ethyl acetate with a high rate and yield. • The formation of ethyl acetate in DWP medium at iron limitation is pH-dependent. • Highly active yeasts from batch processes enabled extension as fed and repeated batch.


Assuntos
Kluyveromyces , Soro do Leite , Soro do Leite/metabolismo , Kluyveromyces/metabolismo , Ferro/metabolismo , Fermentação , Proteínas do Soro do Leite/metabolismo , Lactose/metabolismo
12.
J Food Sci ; 88(4): 1365-1377, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36789850

RESUMO

Laccase enzyme can replace chemical additives to improve texture properties and the volume of bread. Laccase encoding gene from Phlebia brevispora, a native fungus from Misiones, Argentina, was expressed in the generally recognized as safe yeast Kluyveromyces lactis. To improve laccase activity, medium conditions were optimized. The use of iron sulfate at a concentration of 1 mM led to optimum laccase activity (1289 U·L-1 ) on the fourth day of incubation. SDS-PAGE analysis revealed that the molecular mass of purified laccase was about 180 kDa. Optimum pH for the enzyme was 4 and optimum temperature was 40°C. Laccase exhibited high stability at low pH and high temperature. The application of recombinant laccase to bread decreased hardness, gumminess, and chewiness and increased bread volume. Based on these results, recombinant laccase from P. brevispora with improved yield is a good option for application as an improver of the physicochemical quality of bread at the industrial level. Besides, it will allow us to advance toward our goal of developing healthy alternatives for the bakery industry. No previous work has been reported concerning the heterologous expression of the laccase gene native to the province of Misiones, Argentina, with an aim for application in baking. PRACTICAL APPLICATION: Healthy bakeries became a trend in recent years. The use of the laccase enzyme increases the specific volume and decreases the hardness of bread, being thus an alternative for the replacement of chemical additives in the bakery industry.


Assuntos
Kluyveromyces , Lacase , Argentina , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Kluyveromyces/genética , Kluyveromyces/metabolismo , Lacase/genética , Lacase/metabolismo , Temperatura , Culinária
13.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36690347

RESUMO

Lytic enzymes secreted by Kluyveromyces marxianus can lyse Saccharomyces cerevisiae cells. Their ability to hydrolyze yeast cell walls can be used in biotechnological applications, such as the production of glucans and protoplasts, as well as a biological control agent against plant pathogenic fungi. Herein, 27 proteins secreted by K. marxianus were identified by mass spectrometry analyses. Importantly, 14 out of the 27 proteins were classified as hydrolases. Indeed, the enzyme extract secreted by K. marxianus caused damage to S. cerevisiae cells and reduced yeast cell viability. Moreover, K marxianus inhibited spore germination and mycelial growth of the phytopathogenic fungus Botrytis cinerea in simultaneous cocultivation assays. We suggest that this inhibition may be partially related to the yeast's ability to secrete lytic enzymes. Consistent with the in vitro antagonistic tests, K. marxianus was able to protect strawberry fruits inoculated with B. cinerea. Therefore, these findings suggest that K. marxianus possesses potential as a biocontrol agent against strawberry gray mold during the postharvest stage and may also have potential against other phytopathogenic fungi by means of its lytic enzymatic arsenal.


Assuntos
Kluyveromyces , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fungos , Kluyveromyces/metabolismo , Biotecnologia
14.
Appl Microbiol Biotechnol ; 107(4): 1421-1438, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36651929

RESUMO

Kluyveromyces marxianus is a non-conventional yeast with outstanding physiological characteristics and a high potential for lignocellulosic ethanol production. However, achieving high ethanol productivity requires overcoming several biotechnological challenges due to the cellular inhibition caused by the inhibitors present in the medium. In this work, K. marxianus SLP1 was adapted to increase its tolerance to a mix of inhibitory compounds using the adaptive laboratory evolution strategy to study the adaptation and stress response mechanisms used by this non-Saccharomyces yeast. The fermentative and physiological parameters demonstrated that the adapted K. marxianus P8 had a better response against the synergistic effects of multiple inhibitors because it reduced the lag phase from 12 to 4 h, increasing the biomass by 40% and improving the volumetric ethanol productivity 16-fold than the parental K. marxianus SLP1. To reveal the effect of adaptation process in P8, transcriptome analysis was carried out; the result showed that the basal gene expression in P8 changed, suggesting the biological capability of K. marxianus to activate the adaptative prediction mechanism. Similarly, we carried out physiologic and transcriptome analyses to reveal the mechanisms involved in the stress response triggered by furfural, the most potent inhibitor in K. marxianus. Stress response studies demonstrated that P8 had a better physiologic response than SLP1, since key genes related to furfural transformation (ALD4 and ALD6) and stress response (STL1) were upregulated. Our study demonstrates the rapid adaptability of K. marxianus to stressful environments, making this yeast a promising candidate to produce lignocellulosic ethanol. KEY POINTS: • K. marxianus was adapted to increase its tolerance to a mix of inhibitory compounds • The basal gene expression of K. marxianus changed after the adaptation process • Adapted K. marxianus showed a better physiological response to stress by inhibitors • Transcriptome analyses revealed key genes involved in the stress response.


Assuntos
Furaldeído , Kluyveromyces , Furaldeído/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Perfilação da Expressão Gênica , Fermentação , Etanol/metabolismo
15.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36626788

RESUMO

AIMS: Kluyveromyces marxianus' high production of 2-phenylethyl acetate (2-PEA) via L-phenylalanine (Phe) catabolism makes it relevant for industries relying on the production of aroma compounds through fermentation processes. This study assessed the physiological impact of exogenous supplementation of Phe on cell viability, fermentation performance, and, by extension, on lipid and amino acid metabolism in a wine isolate of this yeast. METHODS AND RESULTS: The data showed that Phe exerted cytotoxic effects on K. marxianus IWBT Y885, which were minimal on Saccharomyces cerevisiae and impacted amino acid metabolism and aroma production. We demonstrated that K. marxianus strains fermented sugars more effectively in the absence of Phe. While lipid supplementation did not mitigate any deleterious effects of Phe, it supported viability maintenance and fermentation performance in the absence of Phe. Phe supplementation succeeded in augmenting the production of 2-PE and 2-PEA. CONCLUSIONS: The enhanced production of 2-PEA in K. marxianus suggests that this transesterification may be, at least in part, a compensatory detoxification mechanism for this yeast.


Assuntos
Kluyveromyces , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Kluyveromyces/metabolismo , Açúcares/metabolismo , Fermentação , Aminoácidos/metabolismo
16.
Bioresour Technol ; 365: 128179, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36283669

RESUMO

Glycerol is an ideal co-substrate for xylitol production with Kluyveromyces marxianus. This study demonstrated that K. marxianus catabolizes glycerol through the Gut1-Gut2 pathway instead of the previously speculated NADPH-dependent Gcy1-Dak1 pathway using the transient clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system. Additionally, Utr1p was demonstrated to mediate NADPH generation through NADH phosphorylation. YZB392, which was constructed by integrating Utr1 into the Ypr1 site in the strain overexpressing NcXyl1 and CiGxf1 and harboring disrupted Xyl2, exhibited enhanced glycerol utilization for xylitol production (from 2.50- to 3.30- g/L after consuming 1 g/L glycerol). Fed-batch fermentation at 42 °C with YZB392 yielded 322.07 g/L xylitol, which is the highest known xylitol titer obtained via biological method. Feeding crude glycerol, xylose mother liquor, and corn steep liquor powder into a bioreactor resulted in the production of 235.69 g/L xylitol. This study developed a platform for xylitol production from industrial by-products.


Assuntos
Kluyveromyces , Xilitol , Glicerol/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , NADP/metabolismo , Temperatura , Kluyveromyces/genética , Kluyveromyces/metabolismo , Xilose/metabolismo , Fermentação
17.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142669

RESUMO

The ribonucleoprotein telomerase contains two essential components: telomerase RNA (TER) and telomerase reverse transcriptase (TERT, Est2 in yeast). A small portion of TER, termed the template, is copied by TERT onto the chromosome ends, thus compensating for sequence loss due to incomplete DNA replication and nuclease action. Although telomerase RNA is highly divergent in sequence and length across fungi and mammals, structural motifs essential for telomerase function are conserved. Here, we show that Est2 from the budding yeast Kluyveromyces lactis (klEst2) binds specifically to an essential three-way junction (TWJ) structure in K. lactis TER, which shares a conserved structure and sequence features with the essential CR4-CR5 domain of vertebrate telomerase RNA. klEst2 also binds specifically to the template domain, independently and mutually exclusive of its interaction with TWJ. Furthermore, we present the high-resolution structure of the klEst2 telomerase RNA-binding domain (klTRBD). Mutations introduced in vivo in klTRBD based on the solved structure or in TWJ based on its predicted RNA structure caused severe telomere shortening. These results demonstrate the conservation and importance of these domains and the multiple protein-RNA interactions between Est2 and TER for telomerase function.


Assuntos
Kluyveromyces , Telomerase , Animais , Sequência de Bases , Kluyveromyces/genética , Kluyveromyces/metabolismo , Mamíferos/metabolismo , Conformação de Ácido Nucleico , RNA/metabolismo , Telomerase/metabolismo
18.
Braz J Microbiol ; 53(3): 1549-1564, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35661334

RESUMO

The beany flavor adversely influences consumer acceptance of soymilk (SM) products. Thus, in this work, the co-fermentation of isolated new yeasts (Kluyveromyces marxianus SP-1, Candida ethanolica ATW-1, and Pichia amenthionina Y) and Kluyveromyces marxianus K (a commercial yeast) along with an XPL-1 starter (including five strains of lactic acid bacteria (LAB)) was utilized to mend the beany flavor of fermented SM (FSM) beverages. Probiotic count, pH, titratable acidity, syneresis, water holding capacity, rheological characteristics, and sensory attributes were investigated. Furthermore, the free amino acids, nucleotides, and volatile compounds (VCs) were analyzed, also presenting the collected VC data by exploiting a principal component analysis (PCA) and a heatmap with a hierarchical cluster analysis. The co-fermentation with Kluyveromyces marxianus SP-1 and K remarkably enhanced the LAB strain growth and acid production, improving the rheological attributes, whereas that of yeast along with XPL-1 as a mullite starter could reduce the beany odor. PCA chart displayed that higher amounts of alcohols, ketones, acids, and esters that significantly improved the flavor quality of FSM beverages were generated throughout the co-fermentation process. The co-fermentation with Pichia amenthionina Y generated the highest acetoin (36.19%) and diacetyl (2.02%), thus improving the overall acceptance of FSM, as well as the sensory characteristics of FSM beverages with the highest umami, sweet, odorless amino acids, and umami nucleotides, and the lowest content of alcohol and inosine. Taken together, the co-fermentation of Pichia amenthionina Y along with XPL-1 within SM provides novel insights regarding the development of FSM and fermented beverages.


Assuntos
Kluyveromyces , Lactobacillales , Aminoácidos/metabolismo , Fermentação , Kluyveromyces/metabolismo , Lactobacillales/metabolismo , Nucleotídeos/metabolismo , Leveduras/metabolismo
19.
FEMS Yeast Res ; 22(1)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35521744

RESUMO

Kluyveromyces marxianus is an interesting and important yeast because of particular traits such as thermotolerance and rapid growth, and for applications in food and industrial biotechnology. For both understanding its biology and developing bioprocesses, it is important to understand how K. marxianus responds and adapts to changing environments. For this, a full suite of omics tools to measure and compare global patterns of gene expression and protein synthesis is needed. We report here the development of a ribosome profiling method for K. marxianus, which allows codon resolution of translation on a genome-wide scale by deep sequencing of ribosome locations on mRNAs. To aid in the analysis and sharing of ribosome profiling data, we added the K. marxianus genome as well as transcriptome and ribosome profiling data to the publicly accessible GWIPS-viz and Trips-Viz browsers. Users are able to upload custom ribosome profiling and RNA-Seq data to both browsers, therefore allowing easy analysis and sharing of data. We also provide a set of step-by-step protocols for the experimental and bioinformatic methods that we developed.


Assuntos
Kluyveromyces , Ribossomos , Genoma , Kluyveromyces/genética , Kluyveromyces/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
20.
Braz J Microbiol ; 53(3): 1533-1547, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35488980

RESUMO

The aim of this study was to evaluate the biosynthesis of flavor compounds from rice bran by fermentation facilitated by Kluyveromyces marxianus and Debaryomyces hansenii. The growth of both yeasts was assessed by specific growth rates and doubling time. The biosynthesis of flavor compounds was evaluated by gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS), and Spectrum™ sensory analysis. The specific growth rate (µ) and doubling time (td) of K. marxianus was calculated as 0.16/h and 4.21h, respectively, whereas that of D. hansenii was determined as 0.13/h and 5.33h, respectively. K. marxianus and D. hansenii produced significant levels of higher alcohols and acetate esters from rice bran. Results showed that K. marxianus can produce 827.27 µg/kg of isoamyl alcohol, 169.77 µg/kg of phenyl ethyl alcohol, and 216.08 µg/kg of phenyl ethyl acetate after 24-h batch fermentation. A significant amount of isovaleric acid was also synthesized by K. marxianus (4013 µg/kg) after the batch fermentation of 96 h. 415.64 µg/kg of isoamyl alcohol and 135.77 µg/kg of phenyl ethyl acetate was determined in rice bran fermented by D. hansenii after 24-h fermentation. Fermented cereals and rose were the characteristic flavor descriptors of the fermented rice bran samples. Rose flavor in fermented rice bran samples was found to be associated with phenyl ethyl alcohol, phenyl ethyl acetate, isoamyl acetate, and guaiacol. Thus, the findings of this study demonstrate that the valorization of rice bran can be achieved with the production of natural flavor compounds by yeast metabolism.


Assuntos
Debaryomyces , Kluyveromyces , Oryza , Etanol/metabolismo , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Kluyveromyces/metabolismo , Oryza/metabolismo , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...